強化学習

スポンサーリンク
Python

最適化問題(TSP)を深層強化学習で解いてみた

今回は数理最適化問題を深層強化学習で解くアプローチについて書きます。 前回、巡回セールスマン問題(TSP)について、混合整数計画問題(MIP)としての解き方をPuLPで実装しました。 今回は、TSPについて深層強化学習を使った解き方をPyTorchで試してみます。
Chainer

深層強化学習でシステムトレードしてみたかった

今回は以下のアルゴリズムで、株価のデータから、システムトレードをするエージェントを学習させてみました。 DQN Double DQN Dueling Double DQN Dueling Double DQN + Prioritized Experience Replay
Python

PyTorchで深層強化学習(DQN、DoubleDQN)を実装してみた

以前に勉強したDeep Q-Network(DQN)を、やっぱり離散的な状態を返す簡単なゲームでなく、連続的な状態のゲームにも適用してみたいと思い、久しぶりにまた勉強しました。 最近の深層強化学習の研究を見てみたところ、DQNからさらに進化していて、A3Cなるものまで登場していましたので、少しばかりそちらについても触れてみます。
Chainer

Open AI GymのFrozenLakeを深層強化学習(DeepQ-Network)で解いてみた

前回、強化学習で解いた問題を、今回は深層強化学習(Deep Q-Network、以降DQN)で解いてみます。 DQNを使うほどの問題ではないのですが、実装の勉強のため、簡単な問題で解いてみました。 前回も少し触れましたが、DQNは、Q学習の行動価値関数 $Q(s, a)$ の近似関数を深層学習で求める手法です。
Python

Open AI GymのFrozenLakeを強化学習(Q学習)で解いてみた

Google子会社DeepMind社により開発された、人工知能を搭載したコンピューター囲碁プログラム「AlphaGo(アルファ碁)」の活躍により、深層学習や強化学習の注目度がさらに上がった気がします。
スポンサーリンク